Особой разновидностью стального сплава является рессорно-пружинная сталь. Пружинная сталь обладает рядом особенностей — очень высокий предел текучести, твердость, приемлемый уровень коррозийной устойчивости. Такой материал может гнуться, изменять свою форму под действием внешних факторов. Во время сжатия он сохраняется все свои физические свойства (прочность, механическая устойчивость, химическая инертность). Если такую пружину разжать, то материал вернется в свою обычную форму с сохранением всех физических свойств. Рессорно-пружинная сталь — сплав, который обладает очень высоким пределом текучести. Предел текучести — это физическое свойство какого-либо материала, характеризующее напряжение, при котором деформация продолжают расти без увеличения нагрузки. По факту этот показатель отражает способность материала сохранять свою форму при изгибе и скручивании.
Чем лучше материал сохраняют форму при деформации, тем выше у него предел текучести. Высокий предел текучести возникает в материале за счет специальных методов обработки (закалка, отпуск). Это отличает сталь-пружину от многих других стальных сплавов, которые обычно «обретают необычные свойства» за счет включения в их состав различных легирующих добавок.
Для производства пружинной стали применяются низколегированные сплавы с минимальным количеством добавочных компонентов. В американских, европейских, азиатских странах также часто применяются среднеуглеродистые и высокоуглеродистые соединения, содержащие хром.
Также применяются соединения, содержащие большое количество марганца, никеля, кремния, вольфрама, азота. Эти компоненты делают материал еще более пластичным, а также повышают его химическую инертность (то есть такой материал не будет вступать в реакцию с щелочами, кислотами, солями). Как ясно из названия, пружинная сталь обычно применяется для производства пружин, торсионов, рессор, фортепианных струн, хомутов и многих других изделий. Мы познакомились очень бегло только с наиболее ходовыми марками сталей, применяемыми в машиностроении, далеко не исчерпав их полный перечень. При проектировании используют еще автоматные, литейные, инструментальные, шарикоподшипниковые, рессорно-пружинные, жаропрочные, трансформаторные и многие другие марки легированных сталей. Однако создатели новых, еш е более мощных машин, работающих с большими нагрузками и высокими температурами, требуют материалов с еще лучшими качествами. Поэтому металлурги создают все новые и новые сплавы, применяя разработанные наукой методы, добиваются таких свойств материалов, каких раньше практически нельзя было получить.
Калиброванная сталь изготовляется по техническим требованиям ГОСТ 1051—73, который распространяется па круглую, квадратную, шестигранную и прямоугольную холоднотянутую калиброванную сталь углеродистую конструкционную (ГОСТ 1050—74), сталь повышенной и высокой обрабатываемости (ГОСТ 1414—75), легированную конструкционную (ГОСТ 4543—71), а также легированную и углеродистую инструментальную, быстрорежущую, рессорно-пружинную, коррозионностойкую, жаростойкую и жаропрочную.
По назначению стали классифицируют на конструкционные и инструментальные. Конструкционные стали представляют наиболее обширную группу, предназначенную для изготовления строительных сооружений, деталей машин и приборов. К этим сталям относят цементуемые, улучшаемые, высокопрочные и рессорно-пружинные. Инструментальные стали подразделяют на стали для режущего, измерительного инструмента, штампов холодного и горячего (до 200 °С) деформирования.
В книге рассмотрены различные группы наиболее употребительных в машиностроении материалов конструкционных сталей, чугунов, рессорно-пружинных сталей и сплавов, инструментальных, мартенситностареющих сталей, коррозионностойких и жаропрочных сталей и сплавов, новых сталей для химико-термической обработки.
Метод М применяется для сдаточного и промежуточного контроля углеродистых и легированных инструментальных сталей, шарико- и роликоподшипниковых сталей, конструкционных углеродистых и легированных сталей (с содержанием 0,3% С), рессорно-пружинных и др.
На практике применяют низкотемпературный, средний и высокий отпуски. Низкотемпературный отпуск осуществляется при 150—250°С в течение 1—2 ч. Такой отпуск иногда вызывает прирост твердости на НРС 1—2 в результате распада остаточного аустенита. Низкотемпературный отпуск применяют для инструментальных сталей, изделий после цементации и поверхностной закалки. Среднему отпуску при 350—400° С подвергают пружинную и рессорную сталь и получают структуру троостита с твердостью НРС 40—45 ири достаточной вязкости. Высокий отпуск проводят при 450— 650° С. В этом случае при соответствующей выдержке в структуре образуется зернистый сорбит в отличие от пластинчатого сорбита, получаемого при нормализации. Стали со структурой зернистого сорбита имеют значительно большую ударную вязкость, чем стали с пластинчатым сорбитом. Поэтому высокий отпуск после закалки проводят для деталей, испытывающих при работе ударные нагрузки.
Нет вопросов о данном товаре, станьте первым и задайте свой вопрос.